Balance des Couleurs des Images RVB

Un guide de Bernhard Hubl

1. INTRODUCTION

Une bonne balance de la couleur des d'images CCD peut être faite «manuellement» en inspectant visuellement l'image RVB. Cette méthode n'est pas parfaite, en particulier lorsque vous travaillez avec des images sombres et des images avec des objets à faible hauteur.

Ma méthode est basée sur le chapitre «Color Imaging» de «The Handbook of Astronomical Image Processing», écrit par Richard Berry et James Burnell.

Dans un premier temps il faut mesurer le ratio RGB du télescope utilisé - filtre - système de caméra. A la condition que la hauteur moyenne de l'objet pendant l'exposition RVB soit connue, l'extinction (= affaiblissement de la longueur d'onde d'un rayon lumineux lors du passage de l'atmosphère terrestre) peut être corrigée et la balance des couleurs peut être atteinte compte tenu du rapport RVB mesuré.

Nous voulons arriver à une image couleur RVB équilibrée sans faire de réglages manuels!

2. MESURE DU RATIO RVB AVEC DES ETOILES G2

Cette mesure doit être effectuée avec plusieurs étoiles sur plusieurs nuits afin d'obtenir un résultat d'une grande précision.

2.1. Sélection des étoiles appropriées

Les étoiles doivent remplir les critères suivants:

- Type spectral G1, G2 ou G3 (notre soleil est une étoile G2)
- Etoiles prés du zénith (l'influence de l'extinction est plus faible)
- Luminosité appropriée: Ne pas utiliser des étoiles trop lumineuses (50% maximum du niveau de saturation)

Luminosité appropriée: Ne pas utiliser des étoiles trop lumineuses (50% maximum du niveau de saturation:

Color_balance_french.doc

2010-05-16 9 / 10

Traduit par Thierry Serieys www.pixelsetphotons.com

Tableau 1Etoiles brillantes semblables au soleil (m, <						
Name	Catalog	RA 2000	DE2000	Sp. Type	mv	Const.
	BS 9107	00 04 53.6	+34 39 56	G2V	6.11	And
	HD 1461	00 18 41.7	-08 03 04	G3	6.47	Cet
9 Cet	HD 1835	00 22 51.7	-12 12 34	G2.5	6.39	Cet
18 Cet	BS 0203	00 45 28.6	-12 52 51	G2V	6.16	Cet
	HD 4915	00 51 10.7	-05 02 23	G0V	6.98	Cet
	HD 8262	01 22 17.7	+18 40 57	G2V	6.93	Psc
	BS 483	01 41 47.1	+42 36 49	G1.5V	4.97	And
	HD 20619	03 19 01.8	-02 50 36	G1.5	7.05	Eri
ζ^1 Ret	BS 1006	03 17 46.2	-62 34 32	G2.5V	5.51	Ret
ζ^2 Ret	BS 1010	03 18 12.9	-62 30 23	01.5V	5.23	Ret
λ Aur	BS 1729	05 19 08.4	+40 05 57	G2IV/V	4.71	Aur
	HD 44594	06 20 06.1	-48 44 28	G2	6.61	Car
	HD 45184	06 24 43.8	-28 46 48	G2	6.37	Col
	HD 53705	07 03 57.2	-43 36 29	G1.5	5.56	Pup
	HD 76151	08 54 17.9	-05 26 04	G2	6.01	Нуа
20 LMi	BS 3951	10 01 00.6	+31 55 25	G3	5.37	LMi
35 Leo	HD 89010	1016 32.2	+23 30 31	G1.5V	5.97	Leo
47 UMa	BS 4277	10 59 27.9	+40 25 49	G0V	5.04	UMa
	HD 96700	11 07 54.3	-30 10 22	GI	6.52	Нуа
	HD 102365	11 46 31.0	-40 30 01	G3	4.89	Cen
	BS 5384	14 23 15.2	+01 14 30	G1V	6.27	Vir
	BS 5596	14 50 20.2	+82 30 43	F9V	5.64	UMi
ψSer	BS 5853	15 44 01.6	+02 30 54	G2.5	5.87	Ser
39 Ser	BS 5911	15 53 12.0	+13 11 48	G1	6.08	Ser
	HD 144585	16 07 03.2	+14 04 16	G2	6.31	Ser
λ Ser	BS 5868	15 46 26.5	+07 21 11	G0V	4.42	Ser
18 Sco	BS 6060	16 15 37.1	-08 22 11	G2Va	5.50	Sco
	HD 152792	16 53 32.2	+42 49 30	G0V	6.83	Her
	BS 6538	17 32 00.9	+34 16 15	G5V	6.56	Her
	HD 168874	18 20 49.1	+27 31 50	G2IV	7.01	Her
	HD 177082	19 02 38.0	+14 34 02	G2V	6.90	Aql
16 Cyg A	BS 7503	19 41 48.8	+50 31 31	G1.5V	5.99	Суд

Color_balance_french.doc

16 B	Суд	BS 7504	19 41 51.8	+50 31 03	G2.5V	6.24	Суд
		HD 187237	19 48 00.7	+27 52 10	G2III	6.90	Vul
		BS 7569	19 52 03.4	+11 37 44	G0V	6.16	Aql
		BS 7683	20 05 09.7	+38 28 42	G5IV	6.19	Суд
		BS 7914	20 40 45.1	+19 56 07	G5V	6.44	Del
		BS 8964	23 37 58.5	+46 11 59	G5	6.60	And

Tableau 2

Etoiles faibles semblables au soleil (m_v > 8 mag)

Name	RA 2000	DE2000	mv	Sp. Type	Const.
SA 140-84	00 03 38	-28 41 46	11.961	G?	Sci
SA 92-276	00 56 27	+00 41 52	12.036	G5	Cet
SA 93-101	01 53 18	+00 22 25	9.734	G5	Cet
vB64	04 26 40	+16 44 49	8.10	G2	Tau
SA 92-249	05 57 07	+00 01 11	11.733	G5	Ori
SA 98-682	06 52 16	-00 19 42	13.749	G?	Mon
Rubin 149B	07 24 18	-00 33 07	12.642	G?	CMi
SA 101-321	09 55 40	-00 18 52	12.85	G7	Sex
SA 101-329	09 56 19	-00 26 28	11.99	G7	Sex
SA 102-1081	10 57 04	-00 13 12	9.903	G5	Leo
SA 102-370	10 56 34	-01 10 40	11.229	G2	Leo
SA 103-487	11 55 11	-00 23 38	11.874	G5	Vir
SA 103-204	11 57 27	-00 56 53	11.189	G7	Vir
SA 104-483	12 44 17	-00 27 33	12.08	G5	Vir
SA 105-56	13 38 42	-01 14 14	9.975	G5	Vir
SA 107-684	15 37 18	-00 09 50	8.433	G3	Ser
SA 107-998	15 38 16	+00 15 23	10.436	G3	Ser
SA 196-1801	17 11 08	-60 06 29	12.755	G?	Ara
SA 110-361	18 42 45	+00 08 04	12.425	G5	AqI
SA 112-1333	20 43 12	+00 26 15	9.977	G2	Aqr
SA 133-276	21 42 27	+00 26 20	9.074	G5	Aqr
SA 114-654	22 41 26	+01 10 11	11.83	GO	Aqr
HD 219018	23 12 39	+02 41 10	7.708	G1	Psc
SA 115-2688	23 42 31	+00 52 11	12.487	G?	Psc
SA 115-271	23 45 42	+00 45 14	9.695	G2	Psc

Color_balance_french.doc

L'outil Excel "G2_Calculator.xls" offre une possibilité confortable de trouver rapidement et à chaque fois une étoile G2 adaptée à chaque lieu d'observation. La première feuille de calcul (avec le nom de « Search G2 Stars") contient toutes les étoiles, suggérées par Richard Berry et James Burnell, et un certain nombre d'étoiles supplémentaires, suggérées par l'auteur.

Search G2 st	ars										
Latitude [°]: Longitude [°]: Local Date:	47,9635 14,12806 06.01.2010	North East	• •								
Local Time:	15:30:30	Get tir	me from PC		Sel	ect stars				Sort by altitude	9
Time zone offset:	-1	Get tim	e offset from	n PC	Sele	ct all stars				Sort by RA	
UT Date:	06.01.2010										
UT Time:	14:30:30										
Nome				l Othor		Co Turca	[mag]	[mag]	`onot [[hh mm ss]	[de(
	- D3	1014909		Other	Source V	Sp. type	- D-V -		Donst	■ RA_2000 ▼	
		224020	01	SA 140-84	AIP faint	G?	0,04	12.0 5	rsc Scl	00 00 56,4	
	9107	225239	394		AIP bright	G2	0,63	6,1 A	And	00 04 53,8	+3
		483	759		BH	G2	0,64	7,1 F	eg 🖓	00 09 19,4	+1
		1196	1290		BH	G5	0,66	9,4 5	Scl	00 16 10,3	-2
		1320	1382		BH	G5	0,65	8,0 F	he	00 17 16,5	
	72	1461	1499		AIP_bright	G0	0,67	6,5 0	Cet	00 18 41,9	-C
9 Cet	88	1835	1803		AIP_bright	G3	0,66	6,4 0	Cet	00 22 51,8	-1

Les entrées suivantes (indiquées par la couleur bleue) sont nécessaires pour sélectionner les meilleures étoiles:

- Latitude
- Longitude
- Date
- Heure
- Décalage Horaire

Date et heure font référence à l'heure locale. L'heure locale est généralement la même que celle utilisée par le PC. Ainsi, il est logique d'utiliser le bouton « Get time from PC » pour définir les champs "Local Date" et "Local Time" automatiquement. Le décalage horaire est la différence entre le temps universel (UT) et l'heure locale. Le bouton « Get time offset from PC » définit le champ « Time zone offset » au fuseau horaire utilisé par le PC.

La prochaine étape est de réduire la liste des étoiles en appuyant sur le bouton « Select stars ». La fenêtre suivante apparaît.

Color_balance_french.doc

elect G2 stars	
Vmin [mag] Vmax [mag] 5 < V <	
Select stars by source	
I AIP_bright	AIP_bright: Bright stars suggested by Richard Berry and James Burnell in AIP
✓ AIP_faint	AIP_faint: Faint stars suggested by Richard Berry and James Burnell in AIP
🔽 вн	BH: Additional stars suggested by Bernhard Hubl
Select stars by meridian transit	
C Before meridian transit	
C After meridian transit	
 All stars 	
Ok	Cancel

Les deux premières entrées (Vmin et Vmax) restreignent la liste des étoiles par leur luminosité V. Le meilleur choix pour la zone « Select stars by source » est d'activer les trois coches. La zone « Select stars by méridian transit» est intéressant pour tous les astrophotographes qui travaillent avec une monture équatoriale allemande. On peut limiter la liste des étoiles, à celles qui sont dans le ciel à l'Est (Avant le passage du méridien) ou aux étoiles, qui sont dans le ciel à l'Ist (Avant le passage du méridien) ou aux étoiles, qui sont dans le ciel à l'ouest (après le passage du méridien). Le bouton OK active le tri. Le bouton « Sort by altitude » vous aide à trouver l'étoile avec la plus haute altitude. Cette étoile se trouve dans la première ligne de la liste.

Le bouton Select all stars" désactive toutes les restrictions et vous pouvez voir la liste complète des étoiles.

Le bouton "Sort by RA" vous donne la possibilité de trier la liste des étoiles par leur ascension droite

Color_balance_french.doc

2.2. Prise de vue des étoiles G2

Si vous avez trouvé une étoile appropriée, alors vous devez exposer l'étoile avec le même temps d'exposition à travers chacun des trois filtres couleur. Toutes les images doivent rester en dessous de 50% du niveau de saturation. Pour obtenir une bonne précision, vous devez exposer au moins 30 images pour chaque filtre.

La réduction de l'image doit être fait comme d'habitude (Correction avec des Dark et Flats)

2.3. Détermination du rapport RVB

On peut mesurer la luminosité de l'étoile à travers chaque filtre avec un logiciel standard CCD (par exemple AIP4WIN, Astroart, ...). Vous obtenez de 3 niveaux de signal.

La lumière blanche de l'étoile standard est affaiblie lors du passage de l'atmosphère terrestre: le bleu est fortement affaibli, le vert est moins affaibli et le rouge montre le moins d'affaiblissement. C'est la raison, pour laquelle l'étoile montre une couleur plus rouge par rapport à une exposition au zénith.

Cette « rougeur » due à l'atmosphère terrestre peut être corrigée avec l'outil Excel « G2_Calculator ». Nous ouvrons la deuxième onglet avec le nom « Measure G2 Star »

Measurement of one G2 star										
Input the av	verage height o	of the star, along	with the three sig	inal v	alues derived from ~30 com					
height =	60	۰	Height of the G2	star						
Ar =	0,982		Transmittance in	R						
Ag =	0,972		Transmittance in G							
Ab =	0,959		Transmittance in B							
<u> </u>	Measured	Extinction-	Exposure ratio	l						
	ADU signal	corrected signal	at zenith							
R	23768	24205	1,000							
G	56935	58598	0,413		Save in database					
В	45755	47712	0,507							

Vous devez entrer quatre valeurs (indiquées par la couleur bleue):

- La hauteur de l'étoile G2
- Les 3 niveaux de signal ADU mesurés pour chaque couleur

Color	bal	lance	fren	ch.	doc
	-		_		

Le résultat est le rapport optimal RVB pour une prise de vue au zénith.

Mon ST2000XM avec les filtres SBIG donne le rapport suivant:

R: G: B = 1,0: 0,44: 0,56

Donc, il ya quelques différences avec les valeurs du constructeur: SBIG qui donne le rapport suivant:

R: G: B = 1,0: 0,5: 0,5

Enfin, vous pouvez enregistrer ces poids de couleur dans une base de données en appuyant sur le bouton « Save in database ». La fenêtre suivante apparaît:

Cre	ate new dataset in database	×
	New	
ĺ	EOS1000D 2009	
	EOS10D_Buil	
	ST2000_Baader_2009	
	ST2000_SBIG_2006	
	OK	Cancel

Vous devez entrer un nom unique et non existant pour le nouvel ensemble de données. L'ensemble de données est créé, lorsque vous appuyez sur le bouton OK.

Le troisième onglet de la feuille de calcul G2_Calculator avec le nom « Database of color weight » contient une liste de poids de couleur.

Database of color weights

Name for identification	R	G	В	Date	Camera	Filter	Optics	Observer
EOS1000D_2009	2,03	1	1,52	12.09.2009	EOS1000D	none	Rubinar300	Bernhard Hubl
EOS10D_Buil	1,96	1	1,23	01.01.2004	EOS10D	none	-	Christian Buil
ST2000_Baader_2009	1	0,94	0,98	06.08.2009	ST2000XM	Baader	NP101	Bernhard Hubl
ST2000_SBIG_2006	1	0,44	0,56	07.07.2006	ST2000XM	SBIG	NP101	Bernhard Hubl

Color_balance_french.doc

3. BALANCE DES COULEURS DES PRISES DE VUE DES OBJETS

3.1. Prises de vue RVB

Les images RVB doivent être effectuées à approximativement la même hauteur. Une exposition à proximité du zénith est préférable.

3.2. Durée d'exposition des prises de vue unitaires

En théorie, il est possible de choisir le ratio optimal RVB, calculé avec G2_Calculator. Par exemple: Si j'expose un objet avec mon ST2000XM à une hauteur de 35 °, la quatrième feuille de calcul (Color Balance of Image) fournit le ratio optimal RVB pour cette hauteur.

Color balance of an image									
Extinction c	oefficients		Ratio at zenith	Ratio at zenith					
kr=	0,128		R_Zenith	1					
kg =	0,202		G_Zenith	0,44	Import from database				
kb =	0,294		B_Zenith	0,56					
Transmittan	ce								
Ar =	0,916								
Ag =	0,871								
Ab =	0,818								
Input the ave	erage height o	f the object,	the number of	f R exposures, an	nd the exposure durations				
height =	35	•	Average height	of object during e	xposure				
n_R =	5		Number of expo	osures in R					
t_R =	600	s	Single exposur	e time of R					
t_G =	300	s	Single exposur	e time of G					
t_B =	300	S	Single exposur	e time of B					
	Optimum	Optimum	Filter						
	ratio at object	number of	multiplication						
	height	exposures	factor						
R	1,000	5,0	1,000						
G	0,463	4,6	0,926						
В	0,627	6,3	1,255						

La première étape consiste à importer le poids des couleurs au zénith de la base de données en cliquant sur le bouton « Import from database ». Il est également possible d'entrer le poids des couleurs manuellement dans les cases bleues. Si vous entrez la hauteur désirée dans la cellule bleue « height » (dans notre cas: 35 °), vous obtenez le rapport optimal pour la hauteur de l'objet: R:G:B = 1,0 : 0,46 : 0,63

Color	balance	french	.doc

Je pourrai choisir un temps d'exposition de 10 min pour le rouge, 4,6 min pour le vert et 6,3 min pour le bleu. L'équilibre des couleurs serait atteint automatiquement.

Dans la pratique, cette méthode n'est pas préférable. Il faudrait régler l'exposition pour chaque image à cause des différentes hauteurs de l'objet. Vous auriez besoin de faire beaucoup de Darks! C'est la raison, pour laquelle j'utilise le même temps d'exposition unitaire, indépendamment de la hauteur de l'objet. Le temps d'exposition standard pour mon ST2000XM avec des filtres SBIG avec ma lunette 4"sont les suivants:

R 10 min / 5 min G / B 5 min

3.3. Nombre de prises de vue unitaires

Si la hauteur de l'objet est grande, alors je tire le même nombre de prises de vues unitaires pour chaque filtre. Si la hauteur de l'objet est faible (inférieure à 30 °) alors le nombre d'expositions bleue devrait être augmenté. Àvec une hauteur d'objet très faible, le nombre d'expositions du vert devrait être aussi légèrement augmenté. Le nombre optimal d'exposition unitaires peut être calculé avec la quatrième feuille de calcul de G2_Calculator:

Tout d'abord, vous devez entrer le ratio RVB, qui a été déterminé par la méthode des étoiles G2, dans les champs R_zenith, G_zenith et B_zenith. Ensuite, vous entrez encore la hauteur moyenne de l'objet lors de l'exposition RVB. La dernière étape consiste à entrer le nombre prévu des expositions rouge (n_R) et le nombre d'expositions unitaires prévues (t_R, T_g, t_B). Ensuite, vous obtenez le nombre optimal d'expositions unique dans la colonne «Optimum number of exposures ».

3.4. Balance des couleurs de l'image de l'objet

Après avoir capturé les images brutes et avoir fait la réduction de l'image, l'enregistrement et l'empilement des poses unitaires être fait. Si le nombre de poses de rouge, vert et bleu est le même, alors vous pouvez combiner les images par l'ajout ou la moyenne. Si vous avez un nombre différent de poses unitaires à travers les trois filtres couleur, alors vous devrez utiliser la méthode de la moyenne pour l'empilement.

Avant d'empiler les images rouges, vert et bleu en image RVB vous devez multiplier les images vert et bleu par un facteur. Ces facteurs peuvent être trouvés dans la colonne « Filter multiplication factor ".Par exemple: j'ai fait plusieurs poses RVB de la galaxie NGC253 à une hauteur très faible en moyenne (13 °). Vous pouvez jeter un œil sur les données de l'image dans le tableau suivant:

	Exposure data	Optimum RGB ratio	Optimum number of exposures	Filter multiplication factor
R	4 x 480s	1,00	4,0	1,00
G	5 x 240s	0,56	4,5	1,11
В	7 x 240s	0,95	7,6	1,90

Tableau 3

Données d'exposition de l'image de NGC253

Sans correction manuelle sur la balance des couleurs j'ai obtenu l'image ci-dessous (en pleine résolution sur mon site <u>www.astrophoton.com</u>):

Color_balance_french.doc

Color_balance_french.doc

2010-05-16 9 / 10

Traduit par Thierry Serieys

www.pixelsetphotons.com