Wide Field and Long Focal Length Imaging

Bernhard Hubl AIC 2012

0

- Location and equipment
- Image acquisition
- Calibration, registration and combine
- Image processing
- Examples

My observatory

My northern sky

Observatory

Source: Herbert Raab

Contents

Location and equipment

- Image acquisition
- Calibration, registration and combine
- Image processing
- Examples

Image Scale and Seeing

Image Scale

- 12" Newtonian + ST-2000XM: 1.3"/px
- NP101 + DSLR: 2.2"/px (Bayer) -> 3-4"/px (effective)
- Seeing at my location
 - Typical: 2.4 3.2"
 - Excellent: 1.9 2.2"
 - Bad: 4 7"

Conclusion:

- Wide Field nearly always productive
- Newtonian: Lum < 2.6" / RGB < 4.0"

Tip #1 Introduce clear seeing limits

In my case:

- < 2.6" Lum
- 2.6" 4.0" RGB
- 4.0" 5.0" only wide field
- > 5.0" go sleeping or go for a beer!

Advantage:

- No waste of nights with good seeing for RGB
- Reproducibility

Focal length -> guiding accuracy

- 12" Newtonian: 1.3"/px
- NP101 + DSLR: 2.2"/px (Bayer) -> 3-4"/px (effective)
- Do you need a perfect mount?

Periodic error of my mount

- typical ±10"
- ♦ Worst ±20"
- Period = 13.5 min

0

Tip #2 Analyze periodic error

- High value of PE is no problem
- No abrupt changes of track speed
- Long period

Backlash of my mount

Tip #3 Neutralize backlash

- Wind is critical!
- RA backlash
 - much more weight on the eastern side of the mount

RA

• DE backlash

DE

- Misalignment of polar alignment -> continuous movement of guide star in declination
- Snake dither: CCDSoft plugin Autodither by Paul Kanevsky

Focusing

 Ambient temperature declines up to 10°C during the night

- Refocusing interval: 20 min 60 min
- Focusing during running exposures

Tip #4 Use the camera cooling for refocusing

Focuser

- 2" JMI NGF with Smart Focus
- No temperature compensation
- No temperature measurement
- Idea: Use the percentage of the camera cooling as a detector for the temperature

🐷 Camera	Control					<u>_ </u>
Setup T	ake Imag	e Focus Tool	s Autoguide C	Color AutoS	ave	
Came	era: SBIG	i ST-2000XM		-	Settings	Imager
Filter Whe	eel: SBIG	i CFW-8		•	Settings	C Autoguider
Focus	ser: Sma	tFocus		•	Settings	Connect
🔽 Save	images wi	th coordinated (universal time (U1	(C)		Disconnect
I III Fight III Scree	oriority dov n shutter	vnloads				File Defaults
🔽 Down	load abort	ed exposures e	xposed longer th	an (seconds):	60 ÷	Temperature
Auto o Enable	contrast e Flip Mirro	or None	🔽 СОМЗ]		Event Plug Ins
Device	Linked		Status	Тетар		itter Filter Max
Imager	Yes		Ready	-12.7* (8	82%) 🛛 Clos	ed
Autoguider	Yes		Ready	-12.7* (8	82%) Clos	ed 📃

Tip #4 Use the camera cooling for refocusing

Invest one night for carefully focusing

time	camera cooling [%]	focus position
21:11	84	907
21:40	78	918
22:35	76	920
00:30	73	926
01:20	70	927
02:55	68	932

 Use Excel sheet <u>focus.xls</u> to calculate the focus position

Tip #5 Use the corners of the image for focusing

Many refractors show the following behaviour:

- Stars are elongated far away from the optical axis, when the telescope is not focused.
- The direction of the star elongation gives us a hint in which direction the focus knob has to be moved to reach focus.
- E.g. TeleVue NP101 + manual focuser

Zoom to the center of the image

Move focus from extrafocal to intrafocal position

Zoom to the top right corner

Move focus from extrafocal to intrafocal position

Tip #6 Use guide star position to reproduce framing

Problem:

- Many nights are necessary for a deep image
- Reproducibility of framing is very important for cameras with few pixels (e.g. 1600x1200px of ST-2000XM)

Solution:

- Camera and telescope build a unit (no rotation)
- Note exact position of guide star in first night
- Following nights:

🖉 Camera Control	
Setup Take Image F	ocus Tools Autoguide C
Exposure	Use guide star at
Seconds: 2.000 🚍	X: 138 - Y: 221 -
Declination: 20.00 📑	Acto Move 10

Tip #6 Use guide star position to reproduce framing

- Frame visually by comparison with existing exposures
- Enter the guide star coordinates in the Autoguide tab of CCDSoft
- Start Autoguide
 - CCDSoft does sub-pixel accurate framing for you!

Do you always have a sky like this?

- If yes, then forget the following 3 slides!
- Do you want to double the number of clear nights at your location?
- Why do you not use two telescopes simultaneously?
- It's easier than you think!

Tip #7 Use two telescopes simultaneously

- Why?
 - Double your output (unstable weather)
 - The environment around an object can be interesting
 - Nights with very bad seeing can be used
- How?
 - Guiding with the main telescope (long focal length)
 - Second telescope with much shorter focal length
 - DSLR or OSC for second telescope
 - Maximize exposure time for second telescope
 - Synchronize the exposure and delay times

Tip #7 Synchronize the exposure times

Measure times for

- Lum cycle of main camera (no change of filters)
- RGB cycle of main camera (change of filters)

How?

- Measure total time for 10 cycles
- Better accuracy
- <u>Delay.xls</u>

Bad Seeing

Examples

Ruprecht 173 – NP101 + ST-8300C

Bad Seeing

Examples

Interesting environment

Bad Seeing

Examples

Interesting environment

vdB 1 – 12" Newt + ST-2000XM

0

Contents

Location and equipment

Image acquisition

Calibration, registration and combine

- Image processing
- Examples

Calibration, registration and combine

Long focal length:

- Mono camera -> CCDSTACK
- Wide field:
 - OSC -> CCDSTACK (very similar to mono workflow)
 - DSLR -> IRIS

Calibration with CCDStack

Tip #8 Keep your workflow simple

 What should I do, when I have to choose between two different ways of a processing step?

- Compare the results critically
- If the difference between the results is small, then always choose the simpler way.
- Prefer steps which you understand entirely.
- Include complex steps in your workflow only when the improvement is significant.
- E.g. simple calibration with no hot / dark pixel removal

Convert B	ayer (One Sho	t Colo	or)
- Method	Internolate to Eul	l Size	
	Eutopolate to Fai		
	Extract to Hair Si	ize	
	Resample to	B G	G R
Convert to	o ————		
	Red		
	Green combined		
	🔽 Green from t	ор	
	Green from b	oottom	
V	Blue		
	Grayscale / Lum Color	inanci	3
Bayer Pat	tern		
۰	B G G R	0	R G G B
0	GB RG	0	G R B G
Action —			
App	ly to All	A	pply to This
			Cancel

Registration with CCDStack

Combine with CCDStack

RGB weights

• eXcalibrator by Bob Franke

G2_Calculator.xls

r Credits Help
uge10043 r. cedstack1.EIT
ageroo lo_j_ceaseaentin Tr
🖲 Use (u-g), (g-r)
🔿 Use (b-v), (v-r)
Using SDSS Data
Min Max
-g 1.38 1.48
-r 0.34 0.54
Set Defaulte
Caliburda Tarana
Calibrate Image

Color balance of an image

Extinction c	oefficients		Ratio at zenit	h	
kr =	0,128		R_Zenith	1	
kg =	0,202		G_Zenith	0,92	Import from database
kb =	0,294		B_Zenith	1,03	
Transmittan	ce				
Ar =	0,889				
Ag =	0,830				
Ab =	0,763				
Input the av	erage height o	f the obiect.	the number o	of R exposures, a	and the exposure durations
	<u>5</u> <u>5</u>	,,		,	
h = : - h =	30	•	Average height	t of object during	evnosure
i neight –	50		r morago norgin	L OF ODJECT GUIIIIG	CAPOSUIC
n R =	5		Number of exp	iosures in R	exposure
neignt = n_R = t R =	5	s	Number of exp Single exposu	iosures in R re time of R	exposure
n_R = t_R = t_G =	50 50 300 300	s s	Number of exp Single exposu Single exposu	ror object during iosures in R re time of R re time of G	exposure
neignt = n_R = t_R = t_G = t_B =	5 300 300 300 300	s s s	Number of exp Single exposu Single exposu Single exposu	ror object during nosures in R re time of R re time of G re time of B	exposure
neignt = n_R = t_R = t_G = t_B =	5 300 300 300	S S S	Number of exp Single exposu Single exposu Single exposu	ro object during loosures in R re time of R re time of G re time of B	exposule
neignt = n_R = t_R = t_G = t_B =	300 300 300	s s s	Number of exp Single exposu Single exposu Single exposu	re time of R re time of G re time of B	exposure
neignt = n_R = t_R = t_G = t_B =	5 300 300 300 Optimum ratio at object	s s s Optimum number of	Number of exp Single exposu Single exposu Single exposu Filter multiplication	iosures in R re time of R re time of G re time of B	exposure
negm = n_R = t_R = t_G = t_B =	Optimum ratio at object height	s s Optimum number of exposures	Number of exp Single exposu Single exposu Single exposu Filter multiplication factor	iosures in R re time of R re time of G re time of B	exposure
neugnt = n_R = t_R = t_G = t_B = R	Optimum ratio at object height	s s Optimum number of <u>exposures</u> 5,0	Number of exp Single exposu Single exposu Single exposu Filter multiplication factor 1,000	iosures in R re time of R re time of G re time of B	exposure
neugnt = n_R = t_R = t_G = t_B = <u>R</u> G	0ptimum ratio at object height 0,985	s s Optimum number of <u>exposures</u> 5,0 4,9	Filter Filter Multiplication factor 0,985	iosures in R re time of R re time of G re time of B	exposure

Tiff export with CCDStack 1.4

- DDP with similar settings for Lum and RGB
- Autoscale is a good start
- Reduce Gamma and Background a little bit
- Save as 16 bit TIFF scaled
- Compare Lum and RGB in Photoshop

0

Contents

- Location and equipment
- Image acquisition
- Calibration, registration and combine
- Image processing
- Examples

Image Processing

Minimalist approach

Natural looking image is main goal

 Workflow for wide field and long focal length imaging is very similar

Differences in CCDStack

- Debayer for wide field OSC
- Deconvolution for lum of long focal length
- Differences in Photoshop
 - Pure RGB for wide field
 - LRGB for long focal length
 - OSC images need more color saturation

Photoshop CS2 Workflow I

0

Contents

- Location and equipment
- Image acquisition
- Calibration, registration and combine
- Image processing
- Examples

M 47 – 12" Newt + ST-2000XM

vdB 24 – 12" Newt + ST-2000XM

Astro trips

LDN 988 - Rubinar300 + ST-8300C

Depth?

Hubl, 12" f=1120mm

Hubble Space Telescope image Credit: NASA, ESA, and Johan Richard (Caltech, USA)

Last two tips

www.astronomie.at

c.e.d.i.c.

central european deepsky imaging conference

1st - 3rd March 2013 - Ars Electronica Center Linz / Austria

